iterative-solver 0.0
propose_rspace.h
1#ifndef LINEARALGEBRA_SRC_MOLPRO_LINALG_ITSOLV_PROPOSE_RSPACE_H
2#define LINEARALGEBRA_SRC_MOLPRO_LINALG_ITSOLV_PROPOSE_RSPACE_H
3#include <molpro/linalg/itsolv/IterativeSolver.h>
4#include <molpro/linalg/itsolv/helper.h>
5#include <molpro/linalg/itsolv/subspace/Dimensions.h>
6#include <molpro/linalg/itsolv/subspace/ISubspaceSolver.h>
7#include <molpro/linalg/itsolv/subspace/IXSpace.h>
8#include <molpro/linalg/itsolv/subspace/QSpace.h>
9#include <molpro/linalg/itsolv/subspace/gram_schmidt.h>
10#include <molpro/linalg/itsolv/subspace/util.h>
11#include <molpro/linalg/itsolv/util.h>
12#include <molpro/linalg/itsolv/wrap_util.h>
13#include <molpro/profiler/Profiler.h>
14
16
17template <class R>
18void normalise(VecRef<R>& params, array::ArrayHandler<R, R>& handler, Logger& logger, double thresh = 1.0e-14) {
19 for (auto& p : params) {
20 auto dot = handler.dot(p, p);
21 dot = std::sqrt(std::abs(dot));
22 if (dot > thresh) {
23 handler.scal(1. / dot, p);
24 } else {
25 logger.msg("parameter's length is too small for normalisation, dot = " + Logger::scientific(dot), Logger::Warn);
26 }
27 }
28}
29namespace dspace {
30
39template <typename value_type>
41 const std::vector<int>& remove_qspace, Logger& logger) {
42 logger.msg("construct_projected_solution()", Logger::Trace);
43 const auto nQd = remove_qspace.size();
44 const auto nSol = solutions.rows();
45 auto solutions_proj = subspace::Matrix<value_type>({nSol, nQd + dims.nD});
46 for (size_t i = 0; i < nSol; ++i) {
47 for (size_t j = 0; j < nQd; ++j) {
48 solutions_proj(i, j) = solutions(i, dims.oQ + remove_qspace[j]);
49 }
50 for (size_t j = 0; j < dims.nD; ++j) {
51 solutions_proj(i, nQd + j) = solutions(i, dims.oD + j);
52 }
53 }
54 logger.msg("nSol, nQd, nD " + std::to_string(nSol) + ", " + std::to_string(nQd) + ", " + std::to_string(dims.nD),
56 return solutions_proj;
57}
58
73template <typename value_type>
75 const subspace::Matrix<value_type>& overlap,
76 const subspace::Dimensions& dims, const std::vector<int>& remove_qspace,
77 Logger& logger) {
78 logger.msg("construct_projected_solution_overlap()", Logger::Trace);
79 const auto nSol = solutions_proj.rows();
80 const auto nQd = remove_qspace.size();
81 auto overlap_proj = subspace::Matrix<value_type>({nSol, nSol});
82 for (size_t i = 0; i < nSol; ++i) {
83 for (size_t ii = 0; ii <= i; ++ii) {
84 for (size_t j = 0; j < nQd; ++j) {
85 for (size_t k = 0; k < nQd; ++k) {
86 overlap_proj(i, ii) += solutions_proj(i, j) * solutions_proj(ii, k) *
87 overlap(dims.oQ + remove_qspace[j], dims.oQ + remove_qspace[k]);
88 }
89 for (size_t k = 0; k < dims.nD; ++k) {
90 overlap_proj(i, ii) +=
91 solutions_proj(i, j) * solutions_proj(ii, nQd + k) * overlap(dims.oQ + remove_qspace[j], dims.oD + k);
92 }
93 }
94 for (size_t j = 0; j < dims.nD; ++j) {
95 for (size_t k = 0; k < dims.nD; ++k) {
96 overlap_proj(i, ii) +=
97 solutions_proj(i, nQd + j) * solutions_proj(ii, nQd + k) * overlap(dims.oD + j, dims.oD + k);
98 }
99 for (size_t k = 0; k < nQd; ++k) {
100 overlap_proj(i, ii) +=
101 solutions_proj(i, nQd + j) * solutions_proj(ii, k) * overlap(dims.oD + j, dims.oQ + remove_qspace[k]);
102 }
103 }
104 overlap_proj(ii, i) = overlap_proj(i, ii);
105 }
106 }
107 return overlap_proj;
108}
109
117template <typename value_type, typename value_type_abs>
119 const value_type_abs norm_thresh, Logger& logger) {
120 logger.msg("remove_null_norm_and_normalise()", Logger::Trace);
121 const auto nSol = parameters.rows();
122 auto norm_proj = std::vector<value_type_abs>(nSol, 0.);
123 for (size_t i = 0; i < nSol; ++i)
124 norm_proj[i] = std::sqrt(std::abs(overlap(i, i)));
125 for (size_t i = 0, j = 0; i < nSol; ++i) {
126 if (norm_proj[i] > norm_thresh) {
127 parameters.row(j).scal(1. / norm_proj[i]);
128 overlap.col(j).scal(1. / norm_proj[i]);
129 overlap.row(j).scal(1. / norm_proj[i]);
130 ++j;
131 } else {
132 parameters.remove_row(j);
133 overlap.remove_row_col(j, j);
134 std::stringstream ss;
135 ss << std::setprecision(3) << "remove projected solution parameter i = " << i << ", norm = " << norm_proj[i];
136 logger.msg(ss.str(), Logger::Info);
137 }
138 }
139 if (logger.data_dump) {
140 logger.msg("norm = ", std::begin(norm_proj), std::end(norm_proj), Logger::Info);
141 logger.msg("parameters after normalisation = " + as_string(parameters), Logger::Info);
142 logger.msg("overlap of parameters = " + as_string(overlap), Logger::Info);
143 }
144}
145
158template <typename value_type, typename value_type_abs>
160 const subspace::Matrix<value_type>& overlap_proj, const value_type_abs svd_thresh,
161 Logger& logger) {
162 logger.msg("remove_null_projected_solutions()", Logger::Trace);
163 logger.msg("nS on entry = " + std::to_string(solutions_proj.rows()), Logger::Debug);
164 value_type* m = const_cast<std::vector<value_type>&>(overlap_proj.data()).data();
165 auto svd_vecs = svd_system(overlap_proj.rows(), overlap_proj.cols(), array::Span(m, overlap_proj.size()),
166 std::numeric_limits<value_type_abs>::max(), true);
167 svd_vecs.remove_if([&svd_thresh](const auto& el) { return el.value < svd_thresh; });
168 svd_vecs.sort([](const auto& lt, const auto& rt) { return lt.value < rt.value; });
169 const auto nD = svd_vecs.size();
170 const auto nX = solutions_proj.cols();
171 auto solutions_stable = subspace::Matrix<value_type>({nD, nX});
172 auto svd = svd_vecs.begin();
173 for (size_t i = 0; i < nD; ++i, ++svd)
174 for (size_t j = 0; j < overlap_proj.cols(); ++j)
175 for (size_t k = 0; k < nX; ++k)
176 solutions_stable(i, k) += svd->v[j] * solutions_proj(j, k);
177 logger.msg("nS without null space = " + std::to_string(solutions_stable.rows()), Logger::Debug);
178 return solutions_stable;
179}
180
190template <typename value_type>
192 const subspace::Dimensions& dims, const std::vector<int>& remove_qspace,
193 const subspace::Matrix<value_type>& overlap, const size_t nR) {
194 const auto nDnew = solutions_proj.rows();
195 const auto nQd = remove_qspace.size();
196 const auto nQ = dims.nQ - nQd;
197 auto ov = overlap;
198 for (size_t i = 0; i < dims.nD; ++i) {
199 ov.remove_row_col(dims.oD, dims.oD);
200 }
201 auto is_Qdelete = [&remove_qspace](size_t i) {
202 return std::find(begin(remove_qspace), end(remove_qspace), i) != end(remove_qspace);
203 };
204 for (size_t i = 0, j = 0; i < dims.nQ; ++i) {
205 if (is_Qdelete(i))
206 ov.remove_row_col(dims.oQ + j, dims.oQ + j);
207 else
208 ++j;
209 }
210 const auto oDnew = dims.nP + nQ + nR;
211 ov.resize({oDnew + nDnew, oDnew + nDnew});
212 /*
213 * append overlap with solutions_proj
214 * x_i = \sum_j c_ij v_j
215 * <x_i, v_j> = \sum_k c_ik <v_k, v_j>
216 * <x_i, x_j> = \sum_kl c_ik c_jl <v_k, v_l>
217 */
218 auto accumulate_ov_offdiag = [&](size_t i, size_t j, size_t jj) {
219 for (size_t k = 0; k < nQd; ++k)
220 ov(oDnew + i, j) += solutions_proj(i, k) * overlap(jj, dims.oQ + remove_qspace[k]);
221 for (size_t k = 0; k < dims.nD; ++k)
222 ov(oDnew + i, j) += solutions_proj(i, nQd + k) * overlap(jj, dims.oD + k);
223 ov(j, oDnew + i) = ov(oDnew + i, j);
224 };
225 for (size_t i = 0; i < nDnew; ++i) {
226 for (size_t j = 0; j < dims.nP; ++j)
227 accumulate_ov_offdiag(i, j, dims.oP + j);
228 for (size_t j = 0, jj = 0; j < dims.nQ; ++j)
229 if (!is_Qdelete(j))
230 accumulate_ov_offdiag(i, dims.nP + jj++, dims.oQ + j);
231 for (size_t j = 0; j < nR; ++j)
232 accumulate_ov_offdiag(i, dims.nP + nQ + j, dims.nX + j);
233 }
234 for (size_t i = 0; i < nDnew; ++i) {
235 for (size_t j = 0; j <= i; ++j) {
236 for (size_t k = 0; k < nQd; ++k) {
237 for (size_t l = 0; l < nQd; ++l)
238 ov(oDnew + i, oDnew + j) += solutions_proj(i, k) * solutions_proj(j, l) *
239 overlap(dims.oQ + remove_qspace[k], dims.oQ + remove_qspace[l]);
240 for (size_t l = 0; l < dims.nD; ++l)
241 ov(oDnew + i, oDnew + j) +=
242 solutions_proj(i, k) * solutions_proj(j, nQd + l) * overlap(dims.oQ + remove_qspace[k], dims.oD + l);
243 }
244 for (size_t k = 0; k < dims.nD; ++k) {
245 for (size_t l = 0; l < nQd; ++l)
246 ov(oDnew + i, oDnew + j) +=
247 solutions_proj(i, nQd + k) * solutions_proj(j, l) * overlap(dims.oD + k, dims.oQ + remove_qspace[l]);
248 for (size_t l = 0; l < dims.nD; ++l)
249 ov(oDnew + i, oDnew + j) +=
250 solutions_proj(i, nQd + k) * solutions_proj(j, nQd + l) * overlap(dims.oD + k, dims.oD + l);
251 }
252 ov(oDnew + j, oDnew + i) = ov(oDnew + i, oDnew + j);
253 }
254 }
255 return ov;
256}
257} // namespace dspace
258
271template <class R, class Q, class P, typename value_type>
273 const CVecRef<P>& pparams, const CVecRef<Q>& qparams, const CVecRef<Q>& dparams,
274 ArrayHandlers<R, Q, P>& handlers, Logger& logger) {
275 logger.msg("append_overlap_with_r()", Logger::Trace);
276 const auto nP = pparams.size(), nQ = qparams.size(), nD = dparams.size(), nN = params.size();
277 const auto nX = nP + nQ + nD + nN;
278 const auto oP = 0;
279 const auto oQ = oP + nP;
280 const auto oD = oQ + nQ;
281 const auto oN = oD + nD;
282 auto ov = overlap;
283 ov.resize({nX, nX}); // solutions are last
284 ov.slice({oN, oN}, {oN + nN, oN + nN}) = subspace::util::overlap(params, handlers.rr());
285 ov.slice({oN, oP}, {oN + nN, oP + nP}) = subspace::util::overlap(params, pparams, handlers.rp());
286 ov.slice({oN, oQ}, {oN + nN, oQ + nQ}) = subspace::util::overlap(params, qparams, handlers.rq());
287 ov.slice({oN, oD}, {oN + nN, oD + nD}) = subspace::util::overlap(params, dparams, handlers.rq());
288 auto copy_upper_to_lower = [&ov, oN, nN](size_t oX, size_t nX) {
289 for (size_t i = 0; i < nX; ++i)
290 for (size_t j = 0; j < nN; ++j)
291 ov(oX + i, oN + j) = ov(oN + j, oX + i);
292 };
293 copy_upper_to_lower(oP, nP);
294 copy_upper_to_lower(oQ, nQ);
295 copy_upper_to_lower(oD, nD);
296 if (logger.data_dump) {
297 logger.msg("full overlap P+Q+D+R = " + as_string(ov), Logger::Info);
298 }
299 return ov;
300}
301
310template <typename value_type>
311auto limit_qspace_size(const subspace::Dimensions& dims, const size_t max_size_qspace,
312 const subspace::Matrix<value_type>& solutions, Logger& logger) {
313 logger.msg("limit_qspace_size()", Logger::Trace);
314 using value_type_abs = decltype(std::abs(solutions(0, 0)));
315 auto q_delete = std::vector<int>{};
316 auto q_indices = std::vector<int>(dims.nQ);
317 std::iota(begin(q_indices), end(q_indices), 0);
318 const auto nSol = solutions.rows();
319 while (q_indices.size() > max_size_qspace) {
320 auto max_contrib_to_solution = std::vector<value_type_abs>{};
321 for (auto i : q_indices) {
322 auto contrib = std::vector<value_type_abs>(nSol);
323 for (size_t j = 0; j < nSol; ++j)
324 contrib[j] = std::abs(solutions(j, dims.oQ + i));
325 max_contrib_to_solution.emplace_back(*std::max_element(begin(contrib), end(contrib)));
326 }
327 auto it_min = std::min_element(begin(max_contrib_to_solution), end(max_contrib_to_solution));
328 auto i = std::distance(begin(max_contrib_to_solution), it_min);
329 q_delete.push_back(q_indices.at(i));
330 q_indices.erase(begin(q_indices) + i);
331 logger.msg("contribution to solutions =", std::begin(max_contrib_to_solution), std::end(max_contrib_to_solution),
333 logger.msg("delete Q i = " + std::to_string(i), Logger::Info);
334 }
335 return q_delete;
336}
337
349template <class R, class Q, class P, typename value_type, typename value_type_abs>
351 const std::vector<int>& q_delete, const value_type_abs norm_thresh,
352 const value_type_abs svd_thresh, array::ArrayHandler<Q, Q>& handler, Logger& logger) {
353 const auto dims = xspace.dimensions();
354 const auto overlap = xspace.data.at(subspace::EqnData::S);
355 auto solutions_proj = dspace::construct_projected_solution(solutions, dims, q_delete, logger);
356 auto overlap_proj = dspace::construct_projected_solutions_overlap(solutions_proj, overlap, dims, q_delete, logger);
357 dspace::remove_null_norm_and_normalise(solutions_proj, overlap_proj, norm_thresh, logger);
358 solutions_proj = dspace::remove_null_projected_solutions(solutions_proj, overlap_proj, svd_thresh, logger);
359 overlap_proj = dspace::construct_projected_solutions_overlap(solutions_proj, overlap, dims, q_delete, logger);
360 dspace::remove_null_norm_and_normalise(solutions_proj, overlap_proj, norm_thresh, logger);
361 auto overlap_full_subspace = dspace::construct_full_subspace_overlap(solutions_proj, dims, q_delete, overlap, 0);
362 auto svd_vecs = svd_system(overlap_full_subspace.rows(), overlap_full_subspace.cols(),
363 array::Span(&overlap_full_subspace(0, 0), overlap_full_subspace.size()), svd_thresh, true);
364 assert(svd_vecs.empty() && "P+Q+D subspace should be stable by construction");
365 const auto nD = solutions_proj.rows();
366 const auto nQd = q_delete.size();
367 assert(nQd + dims.nD == solutions_proj.cols());
368 const auto &qparams = xspace.cparamsq(), qactions = xspace.cactionsq();
369 const auto &dparams = xspace.cparamsd(), dactions = xspace.cactionsd();
370 std::vector<Q> dparams_new, dactions_new;
371 {
372 // FIXME need a simpler mechanism for constructing null parameters
373 Q const* q = nullptr;
374 if (!qparams.empty())
375 q = &qparams.front().get();
376 else if (!dparams.empty())
377 q = &dparams.front().get();
378 if (q) {
379 for (size_t i = 0; i < nD; ++i) {
380 dparams_new.emplace_back(handler.copy(*q));
381 dactions_new.emplace_back(handler.copy(*q));
382 handler.fill(0, dparams_new.back());
383 handler.fill(0, dactions_new.back());
384 }
385 }
386 }
387 for (size_t i = 0; i < nD; ++i) {
388 for (size_t j = 0; j < q_delete.size(); ++j) {
389 handler.axpy(solutions_proj(i, j), qparams.at(q_delete[j]), dparams_new.at(i));
390 handler.axpy(solutions_proj(i, j), qactions.at(q_delete[j]), dactions_new.at(i));
391 }
392 for (size_t j = 0; j < dims.nD; ++j) {
393 handler.axpy(solutions_proj(i, nQd + j), dparams.at(j), dparams_new.at(i));
394 handler.axpy(solutions_proj(i, nQd + j), dactions.at(j), dactions_new.at(i));
395 }
396 }
397 for (size_t i = 0; i < nD; ++i) {
398 auto norm = std::sqrt(std::abs(handler.dot(dparams_new.at(i), dparams_new.at(i))));
399 handler.scal(1. / norm, dparams_new[i]);
400 handler.scal(1. / norm, dactions_new[i]);
401 }
402 return std::make_tuple(std::move(dparams_new), std::move(dactions_new));
403}
404
421template <class R, class Q, class P, typename value_type, typename value_type_abs>
423 const subspace::Dimensions& dims, const CVecRef<P>& pparams, const CVecRef<Q>& qparams,
424 const CVecRef<Q>& dparams, const value_type_abs norm_thresh,
425 ArrayHandlers<R, Q, P>& handlers, Logger& logger) {
426 logger.msg("modified_gram_schmidt()", Logger::Trace);
427 const auto nR = rparams.size(), nP = pparams.size(), nQ = qparams.size(), nD = dparams.size();
428 // std::cout << "modified_gram_schmidt() nR="<<nR<<" nQ="<<nQ<<" nD="<<nD<<std::endl;
429 assert(nP == dims.nP && nQ == dims.nQ && nD == dims.nD);
430 auto orthogonalise = [&overlap, &rparams, nR](const auto& xparams, auto& handler, const size_t oX, const size_t nX) {
431 for (size_t i = 0; i < nX; ++i) {
432 auto norm = std::abs(overlap(oX + i, oX + i));
433 if (nR > 0) {
434 auto dot_mat = handler.gemm_inner(cwrap(rparams), cwrap_arg(xparams.at(i).get()));
435 std::pair<size_t, size_t> mcoeff_dim = std::make_pair(1, nR);
436 Matrix<double> mcoeff(dot_mat.data(), mcoeff_dim);
437 for (size_t j = 0; j < nR; ++j) {
438 mcoeff(0, j) = -mcoeff(0, j) / norm;
439 }
440 handler.gemm_outer(mcoeff, cwrap_arg(xparams.at(i).get()), rparams);
441 }
442 }
443 };
444 auto prof = molpro::Profiler::single();
445 prof->start("orthoganalise");
446 orthogonalise(pparams, handlers.rp(), dims.oP, nP);
447 orthogonalise(qparams, handlers.rq(), dims.oQ, nQ);
448 orthogonalise(dparams, handlers.rq(), dims.oD, nD);
449 prof->stop();
450 prof->start("get null_params");
451 auto null_params = std::vector<int>{};
452 for (size_t i = 0; i < nR; ++i) {
453 auto norm = std::sqrt(std::abs(handlers.rr().dot(rparams[i], rparams[i])));
454 if (norm > norm_thresh) {
455 handlers.rr().scal(1. / norm, rparams[i]);
456 for (size_t j = i + 1; j < nR; ++j) {
457 auto ov = handlers.rr().dot(rparams[i], rparams[j]);
458 handlers.rr().axpy(-ov, rparams[i], rparams[j]);
459 }
460 } else {
461 null_params.push_back(i);
462 }
463 }
464 prof->stop();
465 return null_params;
466}
467
481template <typename value_type, typename value_type_abs>
482auto redundant_parameters(const subspace::Matrix<value_type>& overlap, const size_t oR, const size_t nR,
483 const value_type_abs svd_thresh, Logger& logger) {
484 auto prof = molpro::Profiler::single();
485 prof->start("itsolv::svd_system");
486 logger.msg("redundant_parameters()", Logger::Trace);
487 auto redundant_params = std::vector<int>{};
488 auto rspace_indices = std::vector<int>(nR);
489 std::iota(std::begin(rspace_indices), std::end(rspace_indices), 0);
490 auto svd = svd_system(overlap.rows(), overlap.cols(),
491 array::Span(const_cast<value_type*>(overlap.data().data()), overlap.size()), svd_thresh, true);
492 prof->stop();
493 prof->start("find redundant parameters");
494 for (const auto& singular_system : svd) {
495 if (!rspace_indices.empty()) {
496 auto rspace_contribution = std::vector<value_type_abs>{};
497 for (auto i : rspace_indices)
498 rspace_contribution.push_back(std::abs(singular_system.v.at(oR + i)));
499 auto it_min = std::max_element(std::begin(rspace_contribution), std::end(rspace_contribution));
500 auto imin = std::distance(std::begin(rspace_contribution), it_min);
501 redundant_params.push_back(rspace_indices[imin]);
502 rspace_indices.erase(std::begin(rspace_indices) + imin);
503 std::stringstream ss;
504 ss << std::setprecision(3) << "redundant parameter found, i = " << redundant_params.back()
505 << ", svd.value = " << singular_system.value
506 << ", svd.v[i] = " << singular_system.v[oR + redundant_params.back()];
507 logger.msg(ss.str(), Logger::Info);
508 }
509 }
510 prof->stop();
511 return redundant_params;
512}
513
515template <class R>
516auto get_new_working_set(const std::vector<int>& working_set, const CVecRef<R>& params, const CVecRef<R>& wparams) {
517 auto new_indices = find_ref(wparams, params);
518 auto new_working_set = std::vector<int>{};
519 for (auto i : new_indices) {
520 new_working_set.emplace_back(working_set.at(i));
521 }
522 return new_working_set;
523}
524
553template <class R, class Q, class P, typename value_type_abs>
554auto propose_rspace(IterativeSolver<R, Q, P>& solver, const VecRef<R>& parameters, const VecRef<R>& residuals,
556 ArrayHandlers<R, Q, P>& handlers, Logger& logger, value_type_abs svd_thresh,
557 value_type_abs res_norm_thresh, int max_size_qspace, molpro::profiler::Profiler& profiler) {
558 // auto prof = profiler.push("itsolv::propose_rspace"); // FIXME two separate profilers
559 auto prof = molpro::Profiler::single();
560 logger.msg("itsolv::detail::propose_rspace", Logger::Trace);
561 logger.msg("dimensions {nP, nQ, nD, nW} = " + std::to_string(xspace.dimensions().nP) + ", " +
562 std::to_string(xspace.dimensions().nQ) + ", " + std::to_string(xspace.dimensions().nD) + ", " +
563 std::to_string(solver.working_set().size()),
565 profiler.start("itsolv::ISubspaceSolver::solutions");
566 auto solutions = subspace_solver.solutions();
567 profiler.stop();
568 auto q_delete = limit_qspace_size(xspace.dimensions(), max_size_qspace, solutions, logger);
569 logger.msg("delete Q parameter indices = ", q_delete.begin(), q_delete.end(), Logger::Debug);
570 if (!q_delete.empty()) {
571 auto prof = profiler.push("construct_dspace");
572 auto [dparams, dactions] =
573 construct_dspace(solutions, xspace, q_delete, res_norm_thresh, svd_thresh, handlers.qq(), logger);
574 std::sort(begin(q_delete), end(q_delete), std::greater<int>());
575 for (auto iq : q_delete)
576 xspace.eraseq(iq);
577 auto wdparams = wrap(dparams);
578 auto wdactions = wrap(dactions);
579 xspace.update_dspace(wdparams, wdactions);
580 auto eigenvalues_ref = subspace_solver.eigenvalues();
581 subspace_solver.solve(xspace, solutions.rows());
582 auto eigval_error = std::vector<double>{};
583 std::transform(std::begin(eigenvalues_ref), std::end(eigenvalues_ref), std::begin(subspace_solver.eigenvalues()),
584 std::back_inserter(eigval_error), [](auto& e_ref, auto& e_new) { return std::abs(e_ref - e_new); });
585 logger.msg("eigenvalue error due to new D space = ", std::begin(eigval_error), std::end(eigval_error),
587 // FIXME Optionally, solve the subspace problem again and get an estimate of the error due to new D
588 }
589 // Use modified GS to orthonormalise z against P+Q+D, removing any null parameters.
590 auto wresidual = wrap(residuals.begin(), residuals.begin() + solver.working_set().size());
591 profiler.start("normalise");
592 normalise(wresidual, handlers.rr(), logger);
593 profiler.stop();
594 profiler.start("append_overlap_with_r");
595 prof->start("append_overlap_with_r");
596 const auto full_overlap =
597 append_overlap_with_r(xspace.data.at(subspace::EqnData::S), cwrap(wresidual), xspace.cparamsp(),
598 xspace.cparamsq(), xspace.cparamsd(), handlers, logger);
599 profiler.stop();
600 prof->stop();
601 prof->start("redundant_indices");
602 auto redundant_indices =
603 redundant_parameters(full_overlap, xspace.dimensions().nX, wresidual.size(), svd_thresh, logger);
604 prof->stop();
605 logger.msg("redundant indices = ", std::begin(redundant_indices), std::end(redundant_indices), Logger::Debug);
606 util::delete_parameters(redundant_indices, wresidual);
607 profiler.start("modified_gram_schmidt");
608 prof->start("modified_gram_schmidt");
609 auto null_param_indices =
610 modified_gram_schmidt(wresidual, xspace.data.at(subspace::EqnData::S), xspace.dimensions(), xspace.cparamsp(),
611 xspace.cparamsq(), xspace.cparamsd(), res_norm_thresh, handlers, logger);
612 profiler.stop();
613 prof->stop();
614 // Now that there is SVD null_param_indices should always be empty
615 logger.msg("null parameters = ", std::begin(null_param_indices), std::end(null_param_indices), Logger::Debug);
616 util::delete_parameters(null_param_indices, wresidual);
617 normalise(wresidual, handlers.rr(), logger);
618 for (size_t i = 0; i < wresidual.size(); ++i)
619 handlers.rr().copy(parameters.at(i), wresidual.at(i));
620 profiler.start("get_new_working_set");
621 auto new_working_set = get_new_working_set(solver.working_set(), cwrap(residuals), cwrap(wresidual));
622 profiler.stop();
623 return new_working_set;
624}
625} // namespace molpro::linalg::itsolv::detail
626
627#endif // LINEARALGEBRA_SRC_MOLPRO_LINALG_ITSOLV_PROPOSE_RSPACE_H
Enhances various operations between pairs of arrays and allows dynamic code injection with uniform in...
Definition: ArrayHandler.h:162
virtual value_type dot(const AL &x, const AR &y)=0
virtual void scal(value_type alpha, AL &x)=0
virtual AL copy(const AR &source)=0
virtual void axpy(value_type alpha, const AR &x, AL &y)=0
virtual void fill(value_type alpha, AL &x)=0
Non-owning container taking a pointer to the data buffer and its size and exposing routines for itera...
Definition: Span.h:28
Class, containing a collection of array handlers used in IterativeSolver Provides a Builder sub-class...
Definition: ArrayHandlers.h:25
auto & qq()
Definition: ArrayHandlers.h:40
auto & rp()
Definition: ArrayHandlers.h:44
auto & rr()
Definition: ArrayHandlers.h:39
auto & rq()
Definition: ArrayHandlers.h:42
Base class defining the interface common to all iterative solvers.
Definition: IterativeSolver.h:200
virtual const std::vector< int > & working_set() const =0
Working set of roots that are not yet converged.
virtual CVecRef< Q > cparamsq() const =0
virtual CVecRef< P > cparamsp() const =0
virtual CVecRef< Q > cactionsd() const =0
SubspaceData data
Equation data in the subspace.
Definition: IXSpace.h:22
virtual void eraseq(size_t i)=0
Removes parameter i from Q subspace.
virtual CVecRef< Q > cactionsq() const =0
virtual CVecRef< Q > cparamsd() const =0
virtual const Dimensions & dimensions() const =0
virtual void update_dspace(VecRef< Q > &params, VecRef< Q > &actions)=0
Updates D space with the new parameters.
Slice row(size_t i)
Access row slice.
Definition: Matrix.h:118
void remove_row(index_type row)
removes a row from the matrix
Definition: Matrix.h:142
const std::vector< T > & data() const &
Access the underlying data buffer.
Definition: Matrix.h:65
size_t size() const
Definition: Matrix.h:168
index_type rows() const
Definition: Matrix.h:165
index_type cols() const
Definition: Matrix.h:166
Profiler & start(const std::string &name)
Profiler & stop(const std::string &name="")
Proxy push(const std::string &name)
static std::shared_ptr< Profiler > single()
auto construct_projected_solutions_overlap(const subspace::Matrix< value_type > &solutions_proj, const subspace::Matrix< value_type > &overlap, const subspace::Dimensions &dims, const std::vector< int > &remove_qspace, Logger &logger)
Constructs overlap matrix for projected solutions.
Definition: propose_rspace.h:74
auto remove_null_projected_solutions(const subspace::Matrix< value_type > &solutions_proj, const subspace::Matrix< value_type > &overlap_proj, const value_type_abs svd_thresh, Logger &logger)
Transforms to a stable subspace of projected solutions via SVD.
Definition: propose_rspace.h:159
void remove_null_norm_and_normalise(subspace::Matrix< value_type > &parameters, subspace::Matrix< value_type > &overlap, const value_type_abs norm_thresh, Logger &logger)
Removes parameters with norm less than threshold and normalises the rest.
Definition: propose_rspace.h:118
auto construct_full_subspace_overlap(const subspace::Matrix< value_type > &solutions_proj, const subspace::Dimensions &dims, const std::vector< int > &remove_qspace, const subspace::Matrix< value_type > &overlap, const size_t nR)
Constructs overlap matrix of P+Q+R+(projected solutions) subspaces, where Q is without removed parame...
Definition: propose_rspace.h:191
auto construct_projected_solution(const subspace::Matrix< value_type > &solutions, const subspace::Dimensions &dims, const std::vector< int > &remove_qspace, Logger &logger)
Projects solution from the full subspace on to Q_{delete} and current D space.
Definition: propose_rspace.h:40
Definition: IterativeSolverTemplate.h:19
auto limit_qspace_size(const subspace::Dimensions &dims, const size_t max_size_qspace, const subspace::Matrix< value_type > &solutions, Logger &logger)
Ensures that size Q space is within limit by proposing Q parameters for deletion.
Definition: propose_rspace.h:311
void normalise(const size_t n_roots, const VecRef< R > &params, const VecRef< R > &actions, array::ArrayHandler< R, R > &handler, Logger &logger)
Definition: IterativeSolverTemplate.h:80
auto propose_rspace(IterativeSolver< R, Q, P > &solver, const VecRef< R > &parameters, const VecRef< R > &residuals, subspace::IXSpace< R, Q, P > &xspace, subspace::ISubspaceSolver< R, Q, P > &subspace_solver, ArrayHandlers< R, Q, P > &handlers, Logger &logger, value_type_abs svd_thresh, value_type_abs res_norm_thresh, int max_size_qspace, molpro::profiler::Profiler &profiler)
Proposes new parameters for the subspace from the preconditioned residuals.
Definition: propose_rspace.h:554
auto get_new_working_set(const std::vector< int > &working_set, const CVecRef< R > &params, const CVecRef< R > &wparams)
Returns new working set based on parameters included in wparams.
Definition: propose_rspace.h:516
auto append_overlap_with_r(const subspace::Matrix< value_type > &overlap, const CVecRef< R > &params, const CVecRef< P > &pparams, const CVecRef< Q > &qparams, const CVecRef< Q > &dparams, ArrayHandlers< R, Q, P > &handlers, Logger &logger)
Constructs overlap of the full subspace by appending overlap with new parameters to the overlap of pr...
Definition: propose_rspace.h:272
auto construct_dspace(const subspace::Matrix< value_type > &solutions, const subspace::IXSpace< R, Q, P > &xspace, const std::vector< int > &q_delete, const value_type_abs norm_thresh, const value_type_abs svd_thresh, array::ArrayHandler< Q, Q > &handler, Logger &logger)
Constructs the new D space by projecting the solutions onto Qd+D subspace and ensuring they are well ...
Definition: propose_rspace.h:350
auto modified_gram_schmidt(const VecRef< R > &rparams, const subspace::Matrix< value_type > &overlap, const subspace::Dimensions &dims, const CVecRef< P > &pparams, const CVecRef< Q > &qparams, const CVecRef< Q > &dparams, const value_type_abs norm_thresh, ArrayHandlers< R, Q, P > &handlers, Logger &logger)
Orthogonalises R parameters against P+Q+D subspace (and themselves)
Definition: propose_rspace.h:422
auto redundant_parameters(const subspace::Matrix< value_type > &overlap, const size_t oR, const size_t nR, const value_type_abs svd_thresh, Logger &logger)
Deduces a set of parameters that are redundant due to linear dependencies.
Definition: propose_rspace.h:482
auto overlap(const CVecRef< R > &left, const CVecRef< Q > &right, array::ArrayHandler< Z, W > &handler) -> std::enable_if_t< detail::Z_and_W_are_one_of_R_and_Q< R, Q, Z, W >, Matrix< double > >
Calculates overlap matrix between left and right vectors.
Definition: util.h:49
void delete_parameters(std::vector< int > indices, Container &params)
Removes parameters.
Definition: util.h:98
auto cwrap(ForwardIt begin, ForwardIt end)
Takes a begin and end iterators and returns a vector of references to each element.
Definition: wrap.h:52
auto cwrap_arg(T &&arg, S &&... args) -> std::enable_if_t< std::conjunction_v< std::is_same< decay_t< T >, decay_t< S > >... >, CVecRef< decay_t< T > > >
Constructs a vector of const reference wrappers with provided arguments.
Definition: wrap.h:149
auto wrap(ForwardIt begin, ForwardIt end)
Takes a begin and end iterators and returns a vector of references to each element.
Definition: wrap.h:32
std::list< SVD< value_type > > svd_system(size_t nrows, size_t ncols, const array::Span< value_type > &m, double threshold, bool hermitian=false, bool reduce_to_rank=false)
Performs singular value decomposition and returns SVD objects for singular values less than threshold...
Definition: helper-implementation.h:264
std::vector< std::reference_wrapper< const A > > CVecRef
Definition: wrap.h:14
std::vector< std::reference_wrapper< A > > VecRef
Definition: wrap.h:11
std::vector< size_t > find_ref(const VecRef< R > &wparams, ForwardIt begin, ForwardIt end)
Given wrapped references in wparams and a range of original parameters [begin, end),...
Definition: wrap_util.h:17
A dummy structured logger.
Definition: Logger.h:40
void msg(const std::string &message, Level log_lvl)
Definition: Logger.cpp:16
bool data_dump
highest level of warning/error that can be logged
Definition: Logger.h:69
static std::string scientific(double val)
Converts double to a string in scientific notation.
Definition: Logger.cpp:33
@ Info
Definition: Logger.h:49
@ Trace
Definition: Logger.h:49
@ Debug
Definition: Logger.h:49
@ Warn
Definition: Logger.h:49
Stores partitioning of XSpace into P, Q and R blocks with sizes and offsets for each one.
Definition: Dimensions.h:5
size_t oQ
Definition: Dimensions.h:13
size_t nD
Definition: Dimensions.h:10
size_t nX
Definition: Dimensions.h:11
size_t nQ
Definition: Dimensions.h:9
size_t nP
Definition: Dimensions.h:8
size_t oP
Definition: Dimensions.h:12
size_t oD
Definition: Dimensions.h:14
Manages solution of the subspace problem and storage of those solutions.
Definition: ISubspaceSolver.h:15
virtual void solve(IXSpace< R, Q, P > &xspace, size_t nroots_max)=0
Solve the subspace problem.
virtual const std::vector< value_type > & eigenvalues() const =0
Access eigenvalues from the last solve() call.
virtual const Matrix< value_type > & solutions() const =0
Access solutions from the last solve() call.