1#ifndef LINEARALGEBRA_SRC_MOLPRO_LINALG_ITSOLV_ITERATIVESOLVERTEMPLATE_H
2#define LINEARALGEBRA_SRC_MOLPRO_LINALG_ITSOLV_ITERATIVESOLVERTEMPLATE_H
5#include <molpro/Profiler.h>
6#include <molpro/iostream.h>
7#include <molpro/linalg/itsolv/IterativeSolver.h>
8#include <molpro/linalg/itsolv/Logger.h>
9#include <molpro/linalg/itsolv/subspace/ISubspaceSolver.h>
10#include <molpro/linalg/itsolv/subspace/IXSpace.h>
11#include <molpro/linalg/itsolv/subspace/Matrix.h>
12#include <molpro/linalg/itsolv/subspace/util.h>
13#include <molpro/linalg/itsolv/util.h>
14#include <molpro/linalg/itsolv/wrap.h>
15#include <molpro/profiler/Profiler.h>
21inline std::vector<std::pair<size_t, size_t>>
parameter_batches(
const size_t nsol,
const size_t nparam) {
22 auto batches = std::vector<std::pair<size_t, size_t>>{};
24 auto n_batch = nsol / nparam + (nsol % nparam ? 1 : 0);
25 for (
size_t ib = 0, start_sol = 0, end_sol = 0; ib < n_batch; ++ib, start_sol = end_sol) {
26 end_sol = std::min(start_sol + nparam, nsol);
27 batches.emplace_back(start_sol, end_sol);
33template <
class R,
class Q,
class P>
36 const std::vector<std::reference_wrapper<P>>& pparams,
37 const std::vector<std::reference_wrapper<Q>>& qparams,
38 const std::vector<std::reference_wrapper<Q>>& dparams,
size_t oP,
size_t oQ,
size_t oD,
41 prof->start(
"get rd_mat");
44 assert(params.size() >= roots.size());
45 for (
size_t i = 0; i < roots.size(); ++i) {
46 handlers.
rr().fill(0, params.at(i));
49 rq_mat(std::make_pair(qparams.size(), roots.size())), rd_mat(std::make_pair(dparams.size(), roots.size()));
50 for (
size_t i = 0; i < roots.size(); ++i) {
51 for (
size_t j = 0; j < pparams.size(); ++j) {
52 rp_mat(j, i) = solutions(roots[i], oP + j);
54 for (
size_t j = 0; j < qparams.size(); ++j) {
55 rq_mat(j, i) = solutions(roots[i], oQ + j);
57 for (
size_t j = 0; j < dparams.size(); ++j) {
58 rd_mat(j, i) = solutions(roots[i], oD + j);
62 handlers.
rp().gemm_outer(rp_mat,
cwrap(pparams), params);
63 handlers.
rq().gemm_outer(rq_mat,
cwrap(qparams), params);
64 handlers.
rq().gemm_outer(rd_mat,
cwrap(dparams), params);
69 const size_t oP,
const size_t nP) {
70 auto vectorP = std::vector<std::vector<T>>{};
71 for (
auto root : roots) {
72 vectorP.emplace_back();
73 for (
size_t j = 0; j < nP; ++j)
74 vectorP.back().push_back(solutions(root, oP + j));
82 assert(params.size() >= n_roots && actions.size() >= n_roots);
83 for (
size_t i = 0; i < n_roots; ++i) {
84 auto dot = handler.
dot(params.at(i), params.at(i));
85 dot = std::sqrt(std::abs(dot));
87 handler.
scal(1. / dot, params.at(i));
88 handler.
scal(1. / dot, actions.at(i));
95template <
class R,
typename T>
97 assert(residual.size() >= errors.size());
98 for (
size_t i = 0; i < errors.size(); ++i) {
99 auto a = handler.
dot(residual[i], residual[i]);
100 errors[i] = std::sqrt(std::abs(a));
106 const std::vector<T>& value_errors,
const T value_threshold) {
107 auto ordered_errors = std::multimap<T, size_t, std::greater<T>>{};
108 for (
size_t i = 0; i < errors.size(); ++i) {
109 if (errors[i] > threshold or (i < value_errors.size() and value_errors[i] > value_threshold))
110 ordered_errors.emplace(errors[i], i);
112 auto working_set = std::vector<int>{};
113 auto end = (ordered_errors.size() < nw ? ordered_errors.end() : next(begin(ordered_errors), nw));
114 std::transform(begin(ordered_errors), end, std::back_inserter(working_set), [](
const auto& el) {
return el.second; });
115 std::sort(working_set.begin(), working_set.end());
126template <
template <
class,
class,
class>
class Solver,
class R,
class Q,
class P>
129 using typename Solver<R, Q, P>::fapply_on_p_type;
130 using typename Solver<R, Q, P>::scalar_type;
131 using typename Solver<R, Q, P>::value_type;
132 using typename Solver<R, Q, P>::VectorP;
141 profiler()->push(
"itsolv::add_vector");
143 m_logger->msg(
"IterativeSolverTemplate::add_vector iteration = " + std::to_string(
m_stats->iterations),
145 m_logger->msg(
"IterativeSolverTemplate::add_vector size of {params, actions, working_set} = " +
146 std::to_string(parameters.size()) +
", " + std::to_string(actions.size()) +
", " +
150 throw std::runtime_error(
151 "Solver contains P space but no valid apply_p function. Make sure add_p was called correctly.");
153 auto cwparams =
cwrap(begin(parameters), begin(parameters) + nW);
154 auto cwactions =
cwrap(begin(actions), begin(actions) + nW);
156 prof->start(
"update_qspace");
157 m_xspace->update_qspace(cwparams, cwactions);
158 m_stats->q_creations += 2 * nW;
160 prof->start(
"solve_and_generate_working_set");
168 int add_vector(std::vector<R>& parameters, std::vector<R>& actions)
override {
177 const VecRef<R>& actions, fapply_on_p_type apply_p)
override {
178 auto prof =
profiler()->push(
"itsolv::add_p");
179 if (not pparams.empty() and pparams.size() <
n_roots())
180 throw std::runtime_error(
"P space must be empty or at least as large as number of roots sought");
183 m_xspace->update_pspace(pparams, pp_action_matrix);
195 prof->start(
"construct_solution (parameters)");
200 prof->start(
"construct_solution (residual)");
205 prof->start(
"apply");
217 void solution(
const std::vector<int>& roots, std::vector<R>& parameters, std::vector<R>& residual)
override {
220 void solution(R& parameters, R& residual)
override {
224 void solution_params(
const std::vector<int>& roots, std::vector<R>& parameters)
override {
239 double threshold)
override {
256 if (
options.convergence_threshold)
263 auto options = std::make_shared<Options>();
273 void report(std::ostream& cout,
bool endl =
true)
const override {
274 cout <<
"iteration " <<
m_stats->iterations;
278 cout <<
", |residual[" << std::distance(
m_errors.cbegin(), it_max_error) <<
"]| = ";
280 cout <<
", |residual| = ";
281 cout << std::scientific << *it_max_error << std::defaultfloat;
312 scalar_type
value()
const override {
314 : nan(
"molpro::linalg::itsolv::IterativeSolver::value");
318 m_profiler = std::shared_ptr<molpro::profiler::Profiler>(&
profiler);
320 const std::shared_ptr<molpro::profiler::Profiler>&
profiler()
const override {
return m_profiler; }
323 bool generate_initial_guess =
false)
override {
324 if (parameters.empty())
325 throw std::runtime_error(
"Empty container passed to IterativeSolver::solve()");
326 if (parameters.size() != actions.size())
327 throw std::runtime_error(
"Inconsistent container sizes in IterativeSolver::solve()");
333 bool use_diagonals = problem.
diagonals(actions.at(0));
334 std::unique_ptr<Q> diagonals;
336 diagonals.reset(
new Q{
m_handlers->qr().copy(actions.at(0))});
338 if (generate_initial_guess) {
339 if (not use_diagonals)
340 throw std::runtime_error(
"Default initial guess requested, but diagonal elements are not available");
341 auto guess =
m_handlers->qq().select(parameters.size(), *diagonals);
344 molpro::cout <<
"Initial guess generated from diagonal elements" << std::endl;
345 for (
const auto& g : guess) {
346 m_handlers->rp().copy(parameters[root], P{{g.first, 1}});
348 molpro::cout <<
" initial guess " << g.first << std::endl;
352 int nwork = parameters.size();
353 std::vector<P> pspace;
354 if (use_diagonals and
m_max_p > 0) {
356 for (
auto s = selectp.begin(); s != selectp.end(); s++)
358 selectp.erase(s, selectp.end());
362 molpro::cout << selectp.size() <<
"-dimensional P space selected with threshold "
366 for (
const auto& s : selectp)
367 molpro::cout <<
"P space element " << s.first <<
" : " << s.second << std::endl;
368 for (
const auto& s : selectp)
369 pspace.emplace_back((P){{s.first, 1}});
370 fapply_on_p_type apply_on_p = [&problem](
const std::vector<std::vector<value_type>>& pcoeff,
372 problem.
p_action(pcoeff, pparams, actions);
376 actions, apply_on_p);
378 for (
auto iter = 0; iter < this->
m_max_iter && nwork > 0; iter++) {
380 if (this->nonlinear()) {
381 value = problem.
residual(*parameters.begin(), *actions.begin());
382 nwork = this->
add_vector(*parameters.begin(), *actions.begin(),
value);
383 }
else if (iter > 0 or pspace.empty()) {
384 problem.
action(
cwrap(parameters.begin(), parameters.begin() + nwork),
385 wrap(actions.begin(), actions.begin() + nwork));
386 nwork = this->
add_vector(parameters, actions);
392 m_handlers->rq().copy(parameters.at(0), *diagonals);
393 problem.
precondition(
wrap(actions.begin(), actions.begin() + nwork), this->working_set_eigenvalues(),
396 problem.
precondition(
wrap(actions.begin(), actions.begin() + nwork), this->working_set_eigenvalues());
398 nwork = this->end_iteration(parameters, actions);
411 bool solve(R& parameters, R& actions,
const Problem<R>& problem,
bool generate_initial_guess =
false)
override {
412 auto wparams = std::vector<std::reference_wrapper<R>>{std::ref(parameters)};
413 auto wactions = std::vector<std::reference_wrapper<R>>{std::ref(actions)};
414 return solve(wparams, wactions, problem, generate_initial_guess);
416 bool solve(std::vector<R>& parameters, std::vector<R>& actions,
const Problem<R>& problem,
417 bool generate_initial_guess =
false)
override {
418 return solve(
wrap(parameters),
wrap(actions), problem, generate_initial_guess);
423 if (this->nonlinear()) {
426 auto value0 = problem.
residual(v0, v1);
428 std::cout <<
"value0 " << value0 << std::endl;
434 for (
int instance = 1; problem.
test_parameters(instance, v0); ++instance) {
435 auto value1 = problem.
residual(v0, v1);
437 std::cout <<
"testing instance" << instance << std::endl;
438 std::cout <<
"value1 " << value1 << std::endl;
449 auto dv_analytic =
m_handlers->rr().dot(v0, v1);
454 success = success && std::abs(dv_analytic - (value1 - value0)) < threshold;
455 if (verbosity > 0 or (verbosity > -1 and not success))
456 std::cout <<
"{actual, extrapolated} value change: {" << value1 - value0 <<
", " << dv_analytic <<
"}"
460 for (
int instance = 0; problem.
test_parameters(instance, v0); ++instance) {
461 problem.
action({v0}, {v1});
463 auto norm2_residual = std::sqrt(
m_handlers->rr().dot(v1, v1));
464 constexpr double scale_factor{10.0};
466 problem.
action({v0}, {v1});
467 m_handlers->rq().axpy(-scale_factor, residual, v1);
468 auto norm2 = std::sqrt(
m_handlers->rr().dot(v1, v1));
469 success = success && std::abs(norm2 / norm2_residual) < threshold;
470 if (verbosity > 0 or (verbosity > -1 and not success))
471 std::cout <<
"Length of residual: " << norm2_residual <<
", scaling defect: " << norm2 << std::endl;
481 std::shared_ptr<Logger> logger)
484 m_profiler_saved_depth(m_profiler->get_max_depth()) {
486 m_profiler->set_max_depth(
options()->parameter(
"PROFILER_DEPTH", 0));
490 if (molpro::mpi::rank_global() == 0) {
491 auto file =
options()->parameter(
"PROFILER_OUTPUT",
"");
492 if (
profiler()->get_max_depth() > 0 and
493 std::find_if(file.begin(), file.end(), [](
unsigned char ch) { return !std::isspace(ch); }) != file.end())
494 std::ofstream(file) << *
profiler() << std::endl;
496 if (molpro::mpi::rank_global() == 0) {
497 auto file =
options()->parameter(
"PROFILER_DOTGRAPH",
"");
498 if (
profiler()->get_max_depth() > 0 and
499 std::find_if(file.begin(), file.end(), [](
unsigned char ch) { return !std::isspace(ch); }) != file.end())
500 profiler()->dotgraph(file,
options()->parameter(
"PROFILER_THRESHOLD", .01));
521 auto p = prof->push(
"itsolv::solve_and_generate_working_set");
522 prof->start(
"itsolv::solve");
525 prof->start(
"itsolv::temp_solutions");
527 std::vector<std::pair<Q, Q>> temp_solutions{};
529 for (
const auto& batch : batches) {
530 auto [start_sol, end_sol] = batch;
531 auto roots = std::vector<int>(end_sol - start_sol);
532 std::iota(begin(roots), end(roots), start_sol);
533 solution(roots, parameters, action);
534 auto errors = std::vector<scalar_type>(roots.size(), 0);
536 if (batches.size() > 1) {
537 for (
size_t i = 0; i < roots.size(); ++i)
538 temp_solutions.emplace_back(
m_handlers->qr().copy(parameters[i]),
m_handlers->qr().copy(action[i]));
539 m_stats->q_creations += 2 * roots.size();
550 if (batches.size() > 1) {
551 m_handlers->rq().copy(parameters[i], temp_solutions.at(root).first);
552 m_handlers->rq().copy(action[i], temp_solutions.at(root).second);
555 throw std::logic_error(
"incorrect ordering of roots");
557 m_handlers->rr().copy(parameters[i], parameters[root]);
558 m_handlers->rr().copy(action[i], action[root]);
566 template <
typename TTT>
568 if (roots.size() > nparams)
569 throw std::runtime_error(
"asking for more roots than parameters");
570 if (!roots.empty() &&
571 size_t(*std::max_element(roots.begin(), roots.end())) >=
m_subspace_solver->solutions().size())
572 throw std::runtime_error(
"asking for more roots than there are solutions");
579 std::shared_ptr<subspace::IXSpace<R, Q, P>>
m_xspace;
587 std::numeric_limits<double>::max()};
597 mutable std::shared_ptr<molpro::profiler::Profiler> m_profiler;
598 int m_profiler_saved_depth;
Enhances various operations between pairs of arrays and allows dynamic code injection with uniform in...
Definition: ArrayHandler.h:162
virtual value_type dot(const AL &x, const AR &y)=0
virtual void scal(value_type alpha, AL &x)=0
Non-owning container taking a pointer to the data buffer and its size and exposing routines for itera...
Definition: Span.h:28
Class, containing a collection of array handlers used in IterativeSolver Provides a Builder sub-class...
Definition: ArrayHandlers.h:25
auto & rp()
Definition: ArrayHandlers.h:44
auto & rr()
Definition: ArrayHandlers.h:39
auto & rq()
Definition: ArrayHandlers.h:42
Implements IterativeSolver interface that is common to all solvers.
Definition: IterativeSolverTemplate.h:127
void set_profiler(molpro::profiler::Profiler &profiler) override
Definition: IterativeSolverTemplate.h:317
size_t add_p(const CVecRef< P > &pparams, const array::Span< value_type > &pp_action_matrix, const VecRef< R > ¶meters, const VecRef< R > &actions, fapply_on_p_type apply_p) override
Definition: IterativeSolverTemplate.h:176
void set_convergence_threshold(double thresh) override
Definition: IterativeSolverTemplate.h:289
int get_max_iter() const override
Definition: IterativeSolverTemplate.h:305
void solution_params(const std::vector< int > &roots, std::vector< R > ¶meters) override
Definition: IterativeSolverTemplate.h:224
void report(std::ostream &cout, bool endl=true) const override
Definition: IterativeSolverTemplate.h:273
double get_p_threshold() const override
Definition: IterativeSolverTemplate.h:309
std::vector< int > m_working_set
indices of roots in the working set
Definition: IterativeSolverTemplate.h:583
scalar_type value() const override
Definition: IterativeSolverTemplate.h:312
std::shared_ptr< subspace::IXSpace< R, Q, P > > m_xspace
manages the subspace and associated data
Definition: IterativeSolverTemplate.h:579
void set_n_roots(size_t roots) override
Definition: IterativeSolverTemplate.h:247
std::shared_ptr< ArrayHandlers< R, Q, P > > m_handlers
Array handlers.
Definition: IterativeSolverTemplate.h:578
fapply_on_p_type m_apply_p
function that evaluates effect of action on the P space projection
Definition: IterativeSolverTemplate.h:591
void solution(const std::vector< int > &roots, std::vector< R > ¶meters, std::vector< R > &residual) override
Definition: IterativeSolverTemplate.h:217
void set_max_iter(int n) override
Definition: IterativeSolverTemplate.h:304
void check_consistent_number_of_roots_and_solutions(const std::vector< TTT > &roots, const size_t nparams)
Definition: IterativeSolverTemplate.h:567
bool test_problem(const Problem< R > &problem, R &v0, R &v1, int verbosity, double threshold) const override
Definition: IterativeSolverTemplate.h:421
void set_max_p(int n) override
Definition: IterativeSolverTemplate.h:306
std::shared_ptr< subspace::ISubspaceSolver< R, Q, P > > m_subspace_solver
solves the subspace problem
Definition: IterativeSolverTemplate.h:580
int get_max_p() const override
Definition: IterativeSolverTemplate.h:307
size_t n_roots() const override
Definition: IterativeSolverTemplate.h:245
double convergence_threshold() const override
Definition: IterativeSolverTemplate.h:290
std::shared_ptr< Options > get_options() const override
Definition: IterativeSolverTemplate.h:262
size_t m_max_p
maximum size of P space
Definition: IterativeSolverTemplate.h:594
double convergence_threshold_value() const override
Definition: IterativeSolverTemplate.h:292
const subspace::Dimensions & dimensions() const override
Access dimensions of the subspace.
Definition: IterativeSolverTemplate.h:311
size_t solve_and_generate_working_set(const VecRef< R > ¶meters, const VecRef< R > &action)
Solves the subspace problems and selects the working set of roots, returning their parameters and res...
Definition: IterativeSolverTemplate.h:519
const std::shared_ptr< molpro::profiler::Profiler > & profiler() const override
Definition: IterativeSolverTemplate.h:320
IterativeSolverTemplate(std::shared_ptr< subspace::IXSpace< R, Q, P > > xspace, std::shared_ptr< subspace::ISubspaceSolver< R, Q, P > > solver, std::shared_ptr< ArrayHandlers< R, Q, P > > handlers, std::shared_ptr< Statistics > stats, std::shared_ptr< Logger > logger)
Definition: IterativeSolverTemplate.h:478
virtual ~IterativeSolverTemplate()
Definition: IterativeSolverTemplate.h:489
void set_p_threshold(double threshold) override
Definition: IterativeSolverTemplate.h:308
int add_vector(std::vector< R > ¶meters, std::vector< R > &actions) override
Definition: IterativeSolverTemplate.h:168
void solution_params(R ¶meters) override
Definition: IterativeSolverTemplate.h:235
virtual bool linearEigensystem() const
Definition: IterativeSolverTemplate.h:510
const Statistics & statistics() const override
Definition: IterativeSolverTemplate.h:271
void solution(R ¶meters, R &residual) override
Definition: IterativeSolverTemplate.h:220
size_t m_nroots
number of roots the solver is searching for
Definition: IterativeSolverTemplate.h:584
double m_p_threshold
threshold for selecting P space
Definition: IterativeSolverTemplate.h:595
bool m_end_iteration_needed
whether end_iteration should be called after any preconditioner
Definition: IterativeSolverTemplate.h:600
void set_convergence_threshold_value(double thresh) override
Definition: IterativeSolverTemplate.h:291
void solution_params(const std::vector< int > &roots, const VecRef< R > ¶meters) override
Definition: IterativeSolverTemplate.h:228
int add_vector(const VecRef< R > ¶meters, const VecRef< R > &actions) override
Definition: IterativeSolverTemplate.h:140
void clearP() override
Definition: IterativeSolverTemplate.h:189
bool solve(R ¶meters, R &actions, const Problem< R > &problem, bool generate_initial_guess=false) override
Definition: IterativeSolverTemplate.h:411
bool end_iteration_needed() override
Definition: IterativeSolverTemplate.h:575
IterativeSolverTemplate(const IterativeSolverTemplate< Solver, R, Q, P > &)=delete
const std::vector< scalar_type > & errors() const override
Definition: IterativeSolverTemplate.h:269
void report() const override
Definition: IterativeSolverTemplate.h:287
bool m_normalise_solution
whether to normalise the solutions
Definition: IterativeSolverTemplate.h:590
double m_convergence_threshold
residual norms less than this mark a converged solution
Definition: IterativeSolverTemplate.h:585
std::vector< size_t > suggest_p(const CVecRef< R > &solution, const CVecRef< R > &residual, size_t max_number, double threshold) override
Definition: IterativeSolverTemplate.h:238
const std::vector< int > & working_set() const override
Definition: IterativeSolverTemplate.h:243
std::shared_ptr< Logger > m_logger
logger
Definition: IterativeSolverTemplate.h:589
virtual void set_value_errors()
Implementation class should overload this to set errors in the current values (e.g....
Definition: IterativeSolverTemplate.h:506
bool solve(std::vector< R > ¶meters, std::vector< R > &actions, const Problem< R > &problem, bool generate_initial_guess=false) override
Definition: IterativeSolverTemplate.h:416
virtual void construct_residual(const std::vector< int > &roots, const CVecRef< R > ¶ms, const VecRef< R > &actions)=0
Constructs residual for given roots provided their parameters and actions.
Verbosity m_verbosity
how much output to print in solve()
Definition: IterativeSolverTemplate.h:592
void set_options(const Options &options) override
Definition: IterativeSolverTemplate.h:253
std::vector< double > m_errors
errors from the most recent solution
Definition: IterativeSolverTemplate.h:581
int add_vector(R ¶meters, R &actions, value_type value=0) override
Definition: IterativeSolverTemplate.h:171
IterativeSolverTemplate()=delete
void set_verbosity(Verbosity v) override
Definition: IterativeSolverTemplate.h:293
bool solve(const VecRef< R > ¶meters, const VecRef< R > &actions, const Problem< R > &problem, bool generate_initial_guess=false) override
Definition: IterativeSolverTemplate.h:322
int m_max_iter
maximum number of iterations in solve()
Definition: IterativeSolverTemplate.h:593
std::shared_ptr< Statistics > m_stats
accumulates statistics of operations performed by the solver
Definition: IterativeSolverTemplate.h:588
double m_convergence_threshold_value
value changes less than this mark a converged solution
Definition: IterativeSolverTemplate.h:586
void set_verbosity(int v) override
Definition: IterativeSolverTemplate.h:294
Verbosity get_verbosity() const override
Definition: IterativeSolverTemplate.h:303
void solution(const std::vector< int > &roots, const VecRef< R > ¶meters, const VecRef< R > &residual) override
Definition: IterativeSolverTemplate.h:191
std::vector< double > m_value_errors
value errors from the most recent solution
Definition: IterativeSolverTemplate.h:582
IterativeSolverTemplate(IterativeSolverTemplate< Solver, R, Q, P > &&) noexcept=default
Abstract class defining the problem-specific interface for the simplified solver interface to Iterati...
Definition: IterativeSolver.h:77
virtual void action(const CVecRef< R > ¶meters, const VecRef< R > &action) const
Calculate the action of the kernel matrix on a set of parameters. Used by linear solvers,...
Definition: IterativeSolver.h:100
virtual std::vector< double > pp_action_matrix(const std::vector< P > &pparams) const
Calculate the kernel matrix in the P space.
Definition: IterativeSolver.h:153
virtual void precondition(const VecRef< R > &residual, const std::vector< value_t > &shift) const
Apply preconditioning to a residual vector in order to predict a step towards the solution.
Definition: IterativeSolver.h:123
virtual bool diagonals(container_t &d) const
Optionally provide the diagonal elements of the underlying kernel. If implemented and returning true,...
Definition: IterativeSolver.h:112
virtual void p_action(const std::vector< std::vector< value_t > > &p_coefficients, const CVecRef< P > &pparams, const VecRef< container_t > &actions) const
Calculate the action of the kernel matrix on a set of vectors in the P space.
Definition: IterativeSolver.h:165
virtual value_t residual(const R ¶meters, R &residual) const
Calculate the residual vector. Used by non-linear solvers (NonLinearEquations, Optimize) only.
Definition: IterativeSolver.h:92
virtual bool test_parameters(unsigned int instance, R ¶meters) const
Provide values of R vectors for testing the problem class. For use in a non-linear solver,...
Definition: IterativeSolver.h:180
Matrix container that allows simple data access, slicing, copying and resizing without loosing data.
Definition: Matrix.h:28
static std::shared_ptr< Profiler > single()
std::vector< std::vector< T > > construct_vectorP(const std::vector< int > &roots, const subspace::Matrix< T > &solutions, const size_t oP, const size_t nP)
Definition: IterativeSolverTemplate.h:68
void construct_solution(const VecRef< R > ¶ms, const std::vector< int > &roots, const subspace::Matrix< double > &solutions, const std::vector< std::reference_wrapper< P > > &pparams, const std::vector< std::reference_wrapper< Q > > &qparams, const std::vector< std::reference_wrapper< Q > > &dparams, size_t oP, size_t oQ, size_t oD, ArrayHandlers< R, Q, P > &handlers)
Definition: IterativeSolverTemplate.h:34
void normalise(const size_t n_roots, const VecRef< R > ¶ms, const VecRef< R > &actions, array::ArrayHandler< R, R > &handler, Logger &logger)
Definition: IterativeSolverTemplate.h:80
std::vector< std::pair< size_t, size_t > > parameter_batches(const size_t nsol, const size_t nparam)
Definition: IterativeSolverTemplate.h:21
std::vector< int > select_working_set(const size_t nw, const std::vector< T > &errors, const T threshold, const std::vector< T > &value_errors, const T value_threshold)
Definition: IterativeSolverTemplate.h:105
void update_errors(std::vector< T > &errors, const CVecRef< R > &residual, array::ArrayHandler< R, R > &handler)
Definition: IterativeSolverTemplate.h:96
4-parameter interpolation of a 1-dimensional function given two points for which function values and ...
Definition: helper.h:10
auto cwrap(ForwardIt begin, ForwardIt end)
Takes a begin and end iterators and returns a vector of references to each element.
Definition: wrap.h:52
auto wrap_arg(T &&arg, S &&... args) -> std::enable_if_t< std::conjunction_v< std::is_same< decay_t< T >, decay_t< S > >... >, VecRef< decay_t< T > > >
Constructs a vector of reference wrappers with provided arguments.
Definition: wrap.h:135
auto wrap(ForwardIt begin, ForwardIt end)
Takes a begin and end iterators and returns a vector of references to each element.
Definition: wrap.h:32
std::vector< std::reference_wrapper< const A > > CVecRef
Definition: wrap.h:14
std::vector< std::reference_wrapper< A > > VecRef
Definition: wrap.h:11
Verbosity
Specifies how much detail IterativeSolver::solve should write to output.
Definition: Options.h:12
@ Summary
only summary at the start and end of solve
@ Detailed
Iteration plus more detail such as operation count.
@ Iteration
Summary plus minimal results at each iteration.
void read_handler_counts(std::shared_ptr< Statistics > stats, std::shared_ptr< ArrayHandlers< R, Q, P > > handlers)
Definition: Statistics.h:30
const std::shared_ptr< const molpro::Options > options()
Get the Options object associated with iterative-solver.
Definition: options.cpp:4
A dummy structured logger.
Definition: Logger.h:40
void msg(const std::string &message, Level log_lvl)
Definition: Logger.cpp:16
static std::string scientific(double val)
Converts double to a string in scientific notation.
Definition: Logger.cpp:33
@ Info
Definition: Logger.h:49
@ Trace
Definition: Logger.h:49
@ None
Definition: Logger.h:49
@ Debug
Definition: Logger.h:49
@ Warn
Definition: Logger.h:49
Access point for different options in iterative solvers.
Definition: Options.h:20
Information about performance of IterativeSolver instance.
Definition: Statistics.h:10
Stores partitioning of XSpace into P, Q and R blocks with sizes and offsets for each one.
Definition: Dimensions.h:5
Manages solution of the subspace problem and storage of those solutions.
Definition: ISubspaceSolver.h:15